

Outputs of EU FP7 VALORGAS Project Valorisation of Food Waste to Biogas

Becky Arnold Biogen

ABDA R&D Forum Guisborough 12th November 2013

Project Aim

"To valorise food waste by efficient conversion into a second generation biofuel with a high-quality digestate output"

- Achieve a stable digestion process
- Optimise systems for collection of food waste
- Beneficial use of process residues
- Maximising the system net energy gains
- Funded by EU FP7 programme
- Grant value from EU € 3.5 M
- Significant CiK from SME partners

Work Packages

 Waste Collection & Segregation Systems Food waste characterisation & composition Efficiency of [food] waste collection schemes Best practice collection schemes Institutional & community generation rates & applicability of scale Residual waste composition 	 Optimisation of Technology & Nutrient Recovery Improvements to process stability Maximise digester loading Trace Element addition Mass & Energy balances Nutrient recovery through precipitation Thermophilic vs mesophilic digestion Microbiological / biochemical identification
 Small Scale Biogas Upgrade & Storage Systems Development of small scale, low cost biogas upgrade and storage systems Policy recommendations EU and India 	 Energy, Environmental & Life Cycle Evaluation Quality, biosecurity & agronomic usefulness of digestate Digestate dewaterability Overall energy & emission balance

Pre-treatment & Technical-Scale Trials

- Optimisation via pre-treatment
 - Cell disruption
 - Autoclaving
 - Ammonia removal
 - 2 phase biohythane production

Consortium Partners

13 Academic & SME partners from across the EU and India

Presentation Agenda

- Dissemination of project findings to scientific, technical groups and the wider public was a key objective
- Can not provide detailed information on all work packages
- Presentation aims to provide a snap-shot overview of the research
- Provide details of sources of further information

Collection & Segregation Systems

Work Package Objectives

- Capture rate and efficiency of different types of collection schemes
- Composition & physico-chemical characterisation of food waste
- Energy and carbon footprint of collection and transport processes
- Impact of separate FW collection on the recovery of recyclable materials

Compositional & Physico-Chemical Analysis

- Compositional & physico-chemical analysis undertaken on waste from 23 rounds, in 15 cities from 4 countries
- Shows key similarities and differences between countries

- Residual waste analysis post introduction of food waste collection scheme
 - Decrease in the residual waste mass of 12 34%
 - Decrease in food waste present in residual stream of 26 55%
 - Increase in residual waste CV of 9 33%
 - Significant proportion of food waste still present in residual waste
- Data helps Operators negotiate contracts, understand ammonia toxicity & assess CV
- Data to be fed into national databases to enhance collection techniques & rates

Scheme Surveys & Modelling

- <u>Comprehensive survey of collection methods</u> in 27 EU member states
 - Major differences between and within countries
 - Only Netherlands has a national policy
 - Collection method may affect complexity of pre-treatment & efficiency of digestion
- <u>Best practice</u> outputs to be referenced in forthcoming IEA Task 37 report on source separation of waste for use in AD
- Development of a <u>powerful</u>, <u>robust</u>, <u>mechanistic model</u> to assess efficiency of collection schemes
 - Model alternative options for new collection schemes
 - Benchmark the effectiveness of a current scheme against a modelled output
 - Provide a decision support tool for planners and operators to determine optimal rounds for their individual situations
 - Validated
 - Freely available for use from project website

Pre-Treatment Trials

Work Package Objectives

- To optimise pre-treatment of the source segregated waste stream for biogas production and biosecurity of the residual product
 - Cell disruption (no significant effect for food waste)
 - Autoclaving
 - 2-phase biohythane production
 - Ammonia stripping

Pre-Treatment Trials – Significant Results

<u>Autoclaving (experimental & pilot-scale studies)</u>

- Significant reduction in ammonia in digestate and H₂S in biogas
 - Useful for treatment of high protein wastes in thermophilic conditions, or wastes with biosecurity issues
- Slight reduction in biogas yield
- High proportion of FW in lignocellulosic-rich residual waste stream suggests a role for autoclaving

Ammonia Removal (laboratory scale)

- Side stripping successfully reduced TAN by 46 70%, controlling NH_3 inhibition
- No microbial inhibition of the process
- Potential for stabilisation of thermophilic FW digestion

Process Optimisation

Work Package Objectives

- Optimisation of the AD of food waste & alleviation of operational problems
 - Maximise organic loading rates
 - Enhance process stability
 - Enhance understanding of microbial population structures
 - Enhance nutrient recovery
 - Assess mass & energy balances

Key area where research has led to operational scale enhancement in the UK & Europe

Process Optimisation – Significant Results

Biological stability (mesophilic digestion)

- Identified a number of key trace elements are necessary for the long term stability of FW digestion & are lacking in food waste
- Supplementation with trace elements results in increased tolerance of ammonia

Biological Stability (thermophilic digestion)

- Failure of digester occurs at \geq 2.5 g N I⁻¹
- Trace element supplementation is not effective in controlling VFA accumulation in thermophilic digesters
- Food waste can be digested thermophilically by dilution with water, but the ratio must be such as to reduce TAN \leq 2.5 g l⁻¹ which is about a 1:1 dilution

The BIG impact

- Long term, stable operation of food waste digestion is now possible
- Supplementation with trace elements has enabled a 4-fold increase in organic loading rates
- Trace element regime increases biological resistance to variable loadings
- Adopted by a number of UK commercial AD operators

Process Optimisation – Significant Results

Nutrient recovery through precipitation reactions

Struvite precipitation is feasible, although requirement for magnesium is high

Development of mass and energy balances

- Development of common platform for data collection, handling & analysis
 - Demonstrated through 2 case studies with mass balances of 94 96%
- Many inconsistencies in terms in the literature – need clarity for accurate technology comparisons

Small Scale Biogas Upgrade & Storage

Work Package Objective

- To further develop low-cost small-scale biogas upgrading technologies and storage systems for application for:
 - transportation
 - local low-pressure distribution systems

System control interface

Volvo S60 Bi-fuel receiving biomethane

Small Scale Biogas Upgrade & Storage – Significant Results

- Successful development of a low pressure, low cost upgrading system for biogas flows of 10 60 m³ hr⁻¹
 - Excellent performance and energy efficient
 - Containerised system, utilising plumbing & agricultural fittings to allow local maintenance
 - Commercial viability for small-scale niche markets (rural, off grid locations etc)
- Significantly influenced Indian policy
 - Roadmap for successful development of small-scale biogas upgrading and bottling industry in India
- Automation of a new small-scale system able to meet the new Indian standard for biomethane
- Recommendations for promotion of biomethane in local transportation in the EU

Quality, Biosecurity & Agronomic Value of Digestates

Work Package Objectives

• To determine the quality, biosecurity & agronomic value of digestates

Significant findings

- Rye grass laboratory trials confirm FW digestates of high agronomic benefit
- Autoclaving offers same pathogen protection as pasteurisation
 - Also changed properties of food waste resulting in formation of unmineralised nitrogen & a 30% reduction in fertiliser value
- Post treatments to reduce volume, increase ease of application & digestate properties are of interest
- Results now informing UK approach to EU End-of-Waste policy (particularly important in Southern Europe)

Overall Energy and Emissions Balances

Work Package Objective

• Development of a modelling tool for determining the energy balance from the AD of food and other organic wastes

- Spreadsheet version of ADtool is available and being utilised by industry and community groups to size plant and estimate GHG emissions saving
- Software version will be released once beta-testing is completed
- Promotion as tool for policy-making and research
- When used in conjunction with WasteCAT model = rapid simulation of wide range of waste collection & AD scenarios

Conclusions

- Very successful project
- Wealth of knowledge generated
- Practical results which have already had a large impact in terms of direct uptake in industry & influencing policy
- Production of models, systems and recommendations which are freely available and which can make significant improvements to the AD industry
- In tune with issues perfect launch pad for Horizon 2020

Dissemination

- Website: <u>www.valorgas.soton.ac.uk</u>
- Refereed journal papers
 - 37 published or in review
 - 30 in draft form or planned
 - 18 refereed conference papers
- JyU Summer School teaching material
- Youtube
- Twitter @VALORGAS
- An ILCD node to go live shortly

Thank you

www.valorgas.soton.ac.uk

