Anaerobic digestion of livestock effluents and energy crops in Italy David Bolzonella ### **Background** Historically, livestock effluents are applied on agricultural soils. But the same soils also receive mineral fertilizers (like urea or ammonia salts). That's why in 1991 the EC introduced the Directive 91/676/CEE or "Nitrate Directive" (please note the same year the 91/271/CEE focused on wastewater treatment, to prevent water bodies from both diffuse and point source pollution) # Exceedance of critical loads of nutrient nitrogen, 2004 eq ha⁻¹ a⁻¹ No exceedance < 200 200-400 400-600 600-800 > 800 No data Outside study area University of Verona, Department of Biotechnology Map 9.4 Nitrate concentration (mg $NO_{\overline{M}}/I$) in groundwater – frequency distribution at a country level. Source http://ec.europa.eu/envir onment/water/waternitrates/index_en.html # This is a problem of major concern in north-Italy (Po valley) and in the Veneto Region in particular # This is a problem of major concern in north-Italy (Po valley) and in the Veneto Region in particular ## Nitrogen loading in the Veneto Region (kgN/ha year) # Livestock units in the Veneto Region (2007) 950,000 units 800,000 units < 30,000 units 53 million units (and 5 million people!) < 30,000 units ### 0.28 € per kWh for 15 years (that is up to 6,200 € per day for a 1MW unit working 22 hrs/day And what about heat ?!?!) Jyvaskyla Summer School 2011 ### 0.28 € per kWh for 15 years (that is up to 6,200 € per day for a 1MW unit working 22 hrs/day And what about heat ?!?!) ### 0.28 € per kWh for 15 years (that is up to 6,200 € per day for a 1MW unit working 22 hrs/day And what about heat ?!?!) ### 0.28 € per kWh for 15 years (that is up to 6,200 € per day for a 1MW unit working 22 hrs/day And what about heat ?!?!) ### 0.28 € per kWh for 15 years (that is up to 6,200 € per day for a 1MW unit working 22 hrs/day And what about heat ?!?!) # The second driver is clearly the necessity for renewable energy Wholesale prize (as function of the energy mix) # Because of the large subsidies the number of AD plants in farms of the Veneto Region is sky-rocketing # Because of the large subsidies the number of AD plants in farms of the Veneto Region is sky-rocketing We carried out a survey on farm plants in the framework of the Riducareflui project coordinated by Veneto Agricoltura (Veneto Region owned) We considered "old" plants # ... with small CHP units (treating livestock effluents only) ... # These are basically derived from old storage tanks ... and "brand new" plants (treating energy crops mainly) # ... with huge reaction volumes and CHP units # These all are plants using German/Austrian technologies # Primary and secondary digesters by BTS # Coccus® digester by Schmack # Looking at feeding composition, operational conditions and yields of digesters we see that | Plant | Substrate | | | | |-------|--------------------------|----------------|------------|------------| | | 1 | 2 ^a | 3 | 4 | | | Piggery effluent | | Milk serum | | | Ш | Piggery effluent | Energy crops | Glycerol | Agro-waste | | III | Cow effluent | Energy crops | | Agro-waste | | IV | Poultry effluent | Energy crops | | Agro-waste | | V | Cow effluent | Energy crops | Glycerol | Agro-waste | | VI | Cow and poultry effluent | Energy crops | | Agro-waste | | VII | Cow effluent | Energy crops | Glycerol | Agro-waste | | Plant | OLR | HRT | Т | Yields, SGP | Yields, GPR | CH4 | CHP | |-------|------------|------|---------|-------------|------------------------------------|---------|-----------| | | kgVS/m³day | days | ô | m³/kgVS fed | m ³ /m ³ day | % | kW_{ee} | | - 1 | 0.5 | 175 | 32 - 33 | 0.28 | 0.5 | 50 - 60 | 80 | | Ш | 3.0 | 45 | 38 - 40 | 0.44 | 1.33 | 59 - 61 | 1042 | | III | 2.1 | 42 | N@ | 0.57 | 2.7 | N@ | 845 | | IV | 1.1 | 140 | 38 - 40 | 0.55 | 1.0 | 50 | 1042 | | V | 3.0 | 77 | 39 - 41 | 0.60 | 1.76 | 49 - 51 | 1064 | | VI | 3.5 | 67 | 38 - 40 | 0.52 | 1.88 | 49 - 51 | 845 | | VII | 1.7 | 77 | 40 - 42 | 0.49 | 1.20 | 50 - 51 | 1035 | # Looking at feeding composition, operational conditions and yields of digesters we see that | Plant | Substrate | | | | |-------|--------------------------|----------------|------------|------------| | | 1 | 2 ^a | 3 | 4 | | 1 | Piggery effluent | | Milk serum | | | Ш | Piggery effluent | Energy crops | Glycerol | Agro-waste | | III | Cow effluent | Energy crops | | Agro-waste | | IV | Poultry effluent | Energy crops | | Agro-waste | | V | Cow effluent | Energy crops | Glycerol | Agro-waste | | VI | Cow and poultry effluent | Energy crops | | Agro-waste | | VII | Cow effluent | Energy crops | Glycerol | Agro-waste | | Plant | OLR | HRT | Т | Yields, SGP | Yields, GPR | CH4 | CHP | |-------|------------|------|---------|-------------|-------------|---------|------------------| | | kgVS/m³day | days | °C | m³/kgVS fed | m³/m³ day | % | kW _{ee} | | | 0.5 | 175 | 32 - 33 | 0.28 | 0.5 | 50 - 60 | 80 | | Ш | 3.0 | 45 | 38 - 40 | 0.44 | 1.33 | 59 - 61 | 1042 | | Ш | 2.1 | 42 | N@ | 0.57 | 2.7 | N@ | 845 | | IV | 1.1 | 140 | 38 - 40 | 0.55 | 1.0 | 50 | 1042 | | V | 3.0 | 77 | 39 - 41 | 0.60 | 1.76 | 49 - 51 | 1064 | | VI | 3.5 | 67 | 38 - 40 | 0.52 | 1.88 | 49 - 51 | 845 | | VII | 1.7 | 77 | 40 - 42 | 0.49 | 1.20 | 50 - 51 | 1035 | ### Maize grown in the Po valley Triticale These AD plants born to and are supposed to treat livestock effluents but They basically treat energy crops, maize-silage and triticale being by far the most abundant feed material! Energy crops use land, fertilizers, oil, manpower, water and cost some 30-40 € per tonne (but very site-specific because of yield: 40-45 tonnes/ha per year in North Italy) # Changing the paradigm So several other substrates (agro-waste from food crops processing) can be used for the purpose of renewable energy # Seasonal, but covering the whole year (in the Mediterranean Region) | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |---------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | Tomatoes | | | | | | | | | | | | | | Peas, beans, maize | | | | | | | | | | | | | | Apples, pears | | | | | | | | | | | | | | Apricots, peaches | | | | | | | | | | | | | | Fruit marc | | | | | | | | | | | | | | Vinasses | | | | | | | | | | | | | | Livestock effluents | | | | | | | | | | | | | # With similar characteristics and biogas potential of Energy Crops (EC) | Parameters | Total | Total volatile | TVS/TS | COD | N | P | |----------------------------|-------------|----------------|--------|-----------|----------|-----------| | | solids (TS) | solids (TVS) | | | | | | Substrates | g/kg | g/kg | % | g/kg dm | mg/kg dm | mg/kg dm | | Dairy manure (solid) | 260-350 | 250-315 | 78-84 | 880-930 | 34-49 | 6.0-7.8 | | Dairy manure (liquid) | 89-97 | 69-76 | 76-89 | 910-1020 | 31-41 | 7.6-8.1 | | Piggery | 60-90 | 47-76 | 66-83 | 860-965 | 18-42 | 4.2-8.5 | | Poultry (litter) | 467-688 | 397-530 | 72-87 | 751-1000 | 27-47 | 11.8-20.1 | | Duck (liquid) | 124-190 | 105-155 | 81-88 | 802-871 | 27-39 | 10.7-11.6 | | Rabbit manure | 192-255 | 154-213 | 80-84 | 803-970 | 19-21 | 8.0-10.7 | | Maize silage | 272-453 | 262-440 | 89-96 | 545-1170 | 11-17 | 2.2-3.1 | | Triticale silage | 190-315 | 167-282 | 87-95 | 990-1160 | 13-19 | 1.1-4.8 | | Fruit marc | 220-255 | 210-230 | 96-98 | 1120-1250 | 25-35 | 1.2-3-2 | | Potatoes | 157-192 | 167-180 | 92-94 | 980-1050 | 20-26 | 2.2-3-9 | | Onions | 103-130 | 96-104 | 91-94 | 880-996 | 20-34 | 3.0-3.3 | | Vegetables (e.g., lettuce) | 40-80 | 31-70 | 80-91 | 765-1050 | 21-36 | 6.4-7.7 | ### **Biogas potential for different substrates** ### Biogas potential for different substrates # Clearly, this change also determine some changes in the plant structure and managing - ☐ Different substrates, with different characteristics, need to be properly stored - ☐ Feeding strategies and tools (hoppers, pumps) - ☐ Reactor mixing should be improved / changed ## We forgot nitrogen Typical nitrogen distribution in influent and effluent of Italian anaerobic digesters treating livestock effluents, energy crops and agro-waste ## Typical levels of ammonia concentrations ### Costs for nitrogen management (removal/recovery) ### Specific costs of treatment So, can we sustain this? So, can we sustain this? # So, can we sustain this? # **BASIC ECONOMIC BALANCE (1MW)** Considering the following set of data for revenues - ☐ the biogas potential for cow manure and maiz silage - ☐ 2 kWh electric energy per m³ of biogas - **□** 0.28 € per kWh - Avg income 100 € per ton fed And the expenses - ☐ 30 € per ton of maize silage - □ Plant pay-back (ca. 30 €/ton) - Other costs (ca. 10 €/ton) # And what about thermal energy ?!?! We have several things to do Heat/cheel houshold/farms Greenhouse heating Swimming pools heating